The most promising novel therapeutic strategies now target the correction of REDOX abnormalities in treating asthma. People with asthma have very low levels of endogenous antioxidants like SOD and catalase. The airway tissues are under oxidative stress so massive that inflammation develops through the airways. It is so severe that in ICU’s today doctors measure the amount of REDOX molecules (nitrous oxide) in exhaled air to measure the severity of the case from hour to hour. Genetic factors that cause the expression of antioxidant gene polymorphisms are linked to susceptibility.

The immune system seems to be confused about who is a friend (tissues) and who should it attack, and the endothelium of the airways becomes a target for attack resulting in inflammation. Insufficient cellular communication is a root cause, and, of course, is related to imbalances of REDOX molecules. Supplementing with certain molecules can restore opportunities for the body to balance the molecules and restore homeostasis. Sinus allergies have similar pathways of disease in different tissues.

ARS 2010 Jan; 12(1):93-124

Coming Soon

The thyroid gland creates several forms of thyroxin, which impacts all cells by giving them a modulating hormone that acts to keep them on an even keel—too much thyroxin, and metabolism speeds up—too little and the result is swelling and sluggishness.

Throughout life, REDOX-driven chemical reactions can confuse the immune system and initiate a gradual, self-destructive attack on the thyroid. REDOX imbalance can lead to the up-regulation of certain transcription factors, which in turn cause the expression of certain genes such as the thyroglobulin gene. Its expression frequently results in the breakdown of thyroxin production (the most common thyroid problem) and illness (fatigue, weight gain, goiter, and swelling).

Traditional therapies involve supplementation of thyroxin by prescription. Additionally, novel approaches also include correcting REDOX molecule imbalances with supplementation to restore proper communication. The results can be a gradual reversal of the attack on the thyroid gland and restored thyroxin levels.
Mol Endocrinol. 1996 Jul;10(7):801-812

Generally, with aging and stress, sex hormones such as estrogen, progesterone, and testosterone decline, sometimes with devastating effect. REDOX balance can help with hormone production in specific organs, as well as keeping hormone receptors operational. Decline of these hormones deprive cells of balance and therefore support.

Unlike the days around the turn of the 19th century, life expectancy is past 50—it’s more like 80 and beyond, making it imperative to preserve hormone production.

Decline in ovarian production of sex hormones has been shown to directly affect the expression of genes that regulate the production of antioxidants like glutathione and SOD. This stress to the body’s REDOX potential by disabling antioxidants through creating imbalances in REDOX potential is vital to avoid so we can be able to repair and detoxify cells.

During the normal female cycle, there is also variability in the REDOX balance. During high estrogenic phases, there is more free radical production in uterine cells. Hormones and their receptors are all influenced by REDOX potential and balance. The signaling that is required to link hormones to their receptors is also a REDOX reaction.

Maintaining a balanced REDOX potential is imperative to preserving cellular vitality. Supplementing REDOX molecules, hydration, getting proper sleep, eating a plant-based diet, and exercise are vital in preserving hormonal balance and REDOX potential.
REDOX Biology 2013 19;1:340-6
JCEM ISSN :0021-972X

Conditions like lupus, rheumatoid arthritis, thyroiditis, and other autoimmune dysfunctions are rooted in REDOX imbalance, which causes massive confusion of the immune system. From the perspective of REDOX chemistry, these disorders are fundamentally similar—the immune system perceives normal body activity as dangerous and attacks healthy tissues. Inflammation, cellular dysfunction, and even cell death result.

Traditional medicine focuses on drugs that inhibit immune response. This is problematic and even dangerous because normal functions are also affected adversely—unusual infections develop or even cancer can proliferate due to lack of attention from a non-functional defense system. What if the immune system had better communications? What if it could clearly see good from bad? With a proper presence of a balanced REDOX potential, the body can often repair itself.

Autoimmune conditions like rheumatoid arthritis (RA) are characterized by overproduction of certain REDOX signaling molecules, creating an imbalance. This damages lipids, proteins, membranes, and nucleic acids, resulting in massive inflammation. Additionally, these molecular messengers in excess activate nuclear factor Kappa-B, which directs the expression of a series of genes involved in the inflammatory response.

Solutions revolve around restoring REDOX balance. REDOX balance makes appropriate molecular recourse available to the cells. Hydration, plant-based diets, adequate sleep, and REDOX supplementation often allow the wheels of cellular machinery to turn, and balance evolves over time.
Clin Exp Immunol 2008 Jun; 152(3): 415-422

There are few diagnoses that strike more fear in a person than cancer, likely because of the disease’s resistance to traditional therapies. Negative side-effects to these therapies may be as challenging as the disease itself. Cancer is a failure of the immune system to recognize and eliminate defective and/or mutated cells when they develop. As normal regulatory metabolic principals do not govern cancer cells, they reproduce unchecked and eventually overtake the systems of the body.

The cellular breakdown that results in cancer is impacted by two factors: REDOX-directed gene expression that weakens and confuses the immune system and REDOX imbalance that causes direct immune cell dysfunction. Recent science has emerged showing that cancer treatments which include gene therapies are ineffective due to repetitive mutations that outstrip drugs. Today, evidence suggests that cancer is primarily a REDOX disease.

Unlike healthy cells, cancer cells derive energy primarily from glycolysis even though they have oxygen present—in other words, cancer cells crave glucose. Also, cancer mitochondria are hyperpolarized electronically, meaning that REDOX reactions in the mitochondria cannot operate as normal, leaving REDOX balance potentials very “off.”
It seems clear that a focus on REDOX potential with regard to cancer prevention and treatment is beneficial. Until more definitive research has been completed, sleep, eat plant-based food, exercise daily, hydrate, and complement health with a REDOX supplement.

Skin wraps the body in a protective shield, which itself is a living organ actively burning fuel, repairing, and replacing itself 24/7. Environmental factors such as UV light and airborne and topical toxins negatively impact skin health, prompting an adaptive response which is driven by REDOX chemistry. Oxidative damage varies by the degrees of REDOX potential of the tissue affected, since cellular repair is slowed by an imbalance of REDOX signaling molecules.

Skin disorders like psoriasis, a chronic immune-mediated inflammatory condition, are also based in REDOX imbalance, since cellular signaling pathways like transcription factor Kappa B are known to rely on proper REDOX balance. While the ingestion of antioxidants has some value, it is widely known that REDOX signaling molecules provide the electron-rich REDOX molecules that endogenous antioxidants require to operate efficiently to eliminate the free-radical exposure that override cell defenses. Activate your REDOX potential with sleep, hydration, plant-based nutrition, and supplementing with REDOX molecules.
Free Radic Biol Med. 2009 Oct 1;47(7):891-905.